Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Food Chem ; 449: 139227, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599108

RESUMO

Metabolomics, the systematic study of metabolites, is dedicated to a comprehensive analysis of all aspects of plant-based food research and plays a pivotal role in the nutritional composition and quality control of plant-based foods. The diverse chemical compositions of plant-based foods lead to variations in sensory characteristics and nutritional value. This review explores the application of the metabolomics method to plant-based food origin tracing, cultivar identification, and processing methods. It also addresses the challenges encountered and outlines future directions. Typically, when combined with other omics or techniques, synergistic and complementary information is uncovered, enhancing the classification and prediction capabilities of models. Future research should aim to evaluate all factors affecting food quality comprehensively, and this necessitates advanced research into influence mechanisms, metabolic pathways, and gene expression.


Assuntos
Metabolômica , Plantas Comestíveis/química , Plantas Comestíveis/metabolismo , Plantas Comestíveis/genética , Análise de Alimentos , Manipulação de Alimentos , Plantas/metabolismo , Plantas/química , Plantas/classificação
2.
Plant Foods Hum Nutr ; 78(2): 399-406, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37256506

RESUMO

Literature has proposed the existence of a cross kingdom regulation (CRK) between human and plants. In this context, microRNAs present in edible plants would be acquired through diet by the consumer's organism and transported via bloodstream to tissues, where they would modulate gene expression. However, the validity of this phenomenon is strongly debated; indeed, some scholars have discussed both the methodologies and the results obtained in previous works. To date, only one study has performed a bioinformatics analysis on small RNA-sequencing data for checking the presence of plant miRNAs (pmiRNAs) in human plasma. For that investigation, the lack of reliable controls, which led to the misidentification of human RNAs as pmiRNAs, has been deeply criticized. Thus, in the present contribution, we aim to demonstrate the existence of pmiRNAs in human blood, adopting a bioinformatics approach characterized by more stringent conditions and filtering. The information obtained from 380 experiments produced in 5 different next generation sequencing (NGS) projects was examined, revealing the presence of 350 circulating pmiRNAs across the analysed data set. Although one of the NGS projects shows results likely to be attributed to sample contamination, the others appear to provide reliable support for the acquisition of pmiRNAs through diet. To infer the potential biological activity of the identified pmiRNAs, we predicted their putative human mRNA targets, finding with great surprise that they appear to be mainly involved in neurogenesis and nervous system development. Unfortunately, no consensus was identified within the sequences of detected pmiRNAs, in order to justify their stability or capability to be preserved in human plasma. We believe that the issue regarding CKR still needs further clarifications, even if the present findings would offer a solid support that this hypothesis is not impossible.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Dieta , Plantas Comestíveis/genética , Biologia Computacional , RNA de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Regulação da Expressão Gênica de Plantas
3.
Annu Rev Food Sci Technol ; 14: 247-269, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36972153

RESUMO

In contrast to traditional breeding, which relies on the identification of mutants, metabolic engineering provides a new platform to modify the oil composition in oil crops for improved nutrition. By altering endogenous genes involved in the biosynthesis pathways, it is possible to modify edible plant oils to increase the content of desired components or reduce the content of undesirable components. However, introduction of novel nutritional components such as omega-3 long-chain polyunsaturated fatty acids needs transgenic expression of novel genes in crops. Despite formidable challenges, significant progress in engineering nutritionally improved edible plant oils has recently been achieved, with some commercial products now on the market.


Assuntos
Ácidos Graxos Ômega-3 , Plantas Comestíveis , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Comestíveis/genética , Plantas Comestíveis/metabolismo , Óleos de Plantas , Ácidos Graxos Ômega-3/metabolismo , Engenharia Metabólica , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Sementes/genética , Sementes/metabolismo
4.
Food Funct ; 14(2): 691-702, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36625207

RESUMO

Food nutrition and human health are still interesting international issues. Early detection, risk assessment and diet are vital to mitigate the load of intestinal diseases and enhance the quality of life. Plant-derived microRNAs could be transferred to mammalian organisms by cross-kingdom regulation which adjusts relevant target genes for their participation in the process of carcinogenesis. But the mechanism of plant-derived microRNAs in colorectal cancer is still unclear. This review aims to summarize the current pathways of plant-derived microRNAs in colorectal cancer including intestinal bacteria, the tumor microenvironment, plant active substances and protein, discuss the direct or indirect effects of plant-derived microRNAs on the occurrence and/or progression of colorectal cancer and explain why plant-derived microRNAs can be used as a potential anti-cancer agent. Moreover, the drawbacks of plant-derived microRNAs are also discussed in terms of both edible plants and synthetic delivery vectors for RNAi interference technology for human disease treatment. This review will provide a potential way for plant-derived microRNAs to target colorectal cancer.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA de Plantas , Humanos , Neoplasias Colorretais/metabolismo , Dieta , MicroRNAs/genética , Plantas Comestíveis/genética , Qualidade de Vida , Microambiente Tumoral
5.
PLoS One ; 17(3): e0252632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35271584

RESUMO

DNA metabarcoding was employed to identify plant-derived food resources for the Japanese rock ptarmigan (Lagopus muta japonica), which is registered as a natural living monument in Japan, in the Northern Japanese Alps in Toyama Prefecture, Japan, in July to October, 2015-2018. DNA metabarcoding using high-throughput sequencing (HTS) of rbcL and ITS2 sequences from alpine plants found in ptarmigan fecal samples collected in the study area. The obtained sequences were analyzed using a combination of a constructed local database and the National Center for Biotechnology Information (NCBI) database, revealed that a total of 53 plant taxa were food plant resources for ptarmigans. Of these plant taxa, 49 could be assigned to species (92.5%), three to genus (5.7%), and one to family (1.9%). Of the 23 plant families identified from the 105 fecal samples collected, the dominant families throughout all collection periods were Ericaceae (99.0% of 105 fecal samples), followed by Rosaceae (42.9%), Apiaceae (35.2%), and Poaceae (21.0%). In all of the fecal samples examined, the most frequently encountered plant species were Vaccinium ovalifolium var. ovalifolium (69.5%), followed by Empetrum nigrum var. japonicum (68.6%), Kalmia procumbens (42.9%), Tilingia ajanensis (34.3%) and V. uliginosum var. japonicum (34.3%). A rarefaction analysis for each collection period in the study revealed that the food plant resources found in the study area ranged from a minimum of 87.0% in July to a maximum of 97.5% in September, and that 96.4% of the food plant taxa were found throughout the study period. The findings showed that DNA metabarcoding using HTS to construct a local database of rbcL and ITS2 sequences in conjunction with rbcL and ITS2 sequences deposited at the NCBI, as well as rarefaction analysis, are well suited to identifying the dominant food plants in the diet of Japanese rock ptarmigans. In the windswept alpine dwarf shrub community found in the study area, dominant taxa in the Ericaceae family were the major food plant s for Japanese rock ptarmigans from July to October. This plant community therefore needs to be conserved in order to protect the food resources of Japanese rock ptarmigans in the region.


Assuntos
Código de Barras de DNA Taxonômico , Ericaceae , Animais , DNA de Plantas/genética , Fezes , Japão , Plantas Comestíveis/genética , Codorniz
6.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360856

RESUMO

Indigenous communities across the globe, especially in rural areas, consume locally available plants known as Traditional Food Plants (TFPs) for their nutritional and health-related needs. Recent research shows that many TFPs are highly nutritious as they contain health beneficial metabolites, vitamins, mineral elements and other nutrients. Excessive reliance on the mainstream staple crops has its own disadvantages. Traditional food plants are nowadays considered important crops of the future and can act as supplementary foods for the burgeoning global population. They can also act as emergency foods in situations such as COVID-19 and in times of other pandemics. The current situation necessitates locally available alternative nutritious TFPs for sustainable food production. To increase the cultivation or improve the traits in TFPs, it is essential to understand the molecular basis of the genes that regulate some important traits such as nutritional components and resilience to biotic and abiotic stresses. The integrated use of modern omics and gene editing technologies provide great opportunities to better understand the genetic and molecular basis of superior nutrient content, climate-resilient traits and adaptation to local agroclimatic zones. Recently, realizing the importance and benefits of TFPs, scientists have shown interest in the prospection and sequencing of TFPs for their improvements, cultivation and mainstreaming. Integrated omics such as genomics, transcriptomics, proteomics, metabolomics and ionomics are successfully used in plants and have provided a comprehensive understanding of gene-protein-metabolite networks. Combined use of omics and editing tools has led to successful editing of beneficial traits in several TFPs. This suggests that there is ample scope for improvement of TFPs for sustainable food production. In this article, we highlight the importance, scope and progress towards improvement of TFPs for valuable traits by integrated use of omics and gene editing techniques.


Assuntos
Segurança Alimentar/métodos , Plantas Comestíveis/genética , Plantas Comestíveis/metabolismo , Edição de Genes , Genômica/métodos , Humanos , Metabolômica , Plantas Comestíveis/química , Proteômica
7.
Nutrients ; 13(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445042

RESUMO

The consumption of plant sprouts as part of human day-to-day diets is gradually increasing, and their health benefit is attracting interest across multiple disciplines. The purpose of this review was to (a) critically evaluate the phytochemicals in selected sprouts (alfalfa, buckwheat, broccoli, and red cabbage), (b) describe the health benefits of sprouts, (c) assess the recent advances in sprout production, (d) rigorously evaluate their safety, and (e) suggest directions that merit special consideration for further novel research on sprouts. Young shoots are characterized by high levels of health-benefitting phytochemicals. Their utility as functional ingredients have been extensively described. Tremendous advances in the production and safety of sprouts have been made over the recent past and numerous reports have appeared in mainstream scientific journals describing their nutritional and medicinal properties. However, subjects such as application of sprouted seed flours in processed products, utilizing sprouts as leads in the synthesis of nanoparticles, and assessing the dynamics of a relationship between sprouts and gut health require special attention for future clinical exploration. Sprouting is an effective strategy allowing manipulation of phytochemicals in seeds to improve their health benefits.


Assuntos
Dieta Saudável/tendências , Valor Nutritivo , Compostos Fitoquímicos/análise , Plantas Comestíveis/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Animais , Qualidade de Produtos para o Consumidor , Manipulação de Alimentos , Germinação , Humanos , Plantas Comestíveis/efeitos adversos , Plantas Comestíveis/genética , Plantas Comestíveis/metabolismo , Plantas Geneticamente Modificadas/efeitos adversos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plântula/efeitos adversos , Plântula/genética , Plântula/metabolismo , Sementes/efeitos adversos , Sementes/genética , Sementes/metabolismo
8.
Food Funct ; 12(7): 2829-2849, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33877242

RESUMO

In recent years, people have become increasingly interested in bioactive ingredients from plants, especially antioxidant molecules such as melatonin, which are beneficial to human health. The purpose of this article is to provide new information on plant-derived foods with a high content of melatonin. We comprehensively summarize the content of melatonin in plant-derived foods and discuss the factors that influence melatonin levels to provide new ideas on enhancement. Additionally, we describe the biosynthetic pathway of melatonin and identify its major functions. Medicinal herbs are often rich in melatonin while many vegetables and fruits exhibit somewhat lower levels with wide variations among species. The genetic traits of plants, the phenological stage of the cultivar, the photoperiod, the level of stress to which the plants are exposed at the time of harvest, exposure to agrochemicals and determination methods are the main factors affecting the melatonin content. To date, standardization of uniform sampling times and the use of suitable pretreatments as well as determination methods have not been achieved. The results of the studies reviewed highlight the potentially important role of plant melatonin in influencing the progression of human diseases. Based on the health promotional aspects of melatonin, consuming foods containing higher concentrations of tryptophan and melatonin is suggested.


Assuntos
Antioxidantes/análise , Melatonina/análise , Plantas Comestíveis/química , Agroquímicos/farmacologia , Anti-Inflamatórios , Antioxidantes/administração & dosagem , Frutas/química , Promoção da Saúde , Humanos , Melatonina/administração & dosagem , Melatonina/fisiologia , Fotoperíodo , Plantas Comestíveis/genética , Plantas Comestíveis/crescimento & desenvolvimento , Plantas Medicinais/química , Sono , Especificidade da Espécie , Verduras/química
9.
Toxicol Appl Pharmacol ; 414: 115425, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33516820

RESUMO

BACKGROUND: The current COVID-19 pandemic is caused by SARS-CoV-2 which belongs to coronaviridae family. Despite the global prevalence, there are currently no vaccines or drugs. Dietary plant derived exosome-like vesicles are known as edible nanoparticles (ENPs). ENPs are filled with microRNAs (miRNAs), in bioavailable form. Recently, cross-kingdom regulation of human transcripts by plant miRNAs have been demonstrated. However, ENP derived miRNAs targeting SARS-CoV-2 has not been described. STUDY DESIGN: Mature ENP-derived miRNA sequences were retrieved from small RNA sequencing datasets available in the literature. In silico target prediction was performed to identify miRNAs that could target SARS-CoV-2. ENPs were isolated from ginger and grapefruit plants and the expression of SARS-CoV-2 targeting miRNAs were confirmed by qRT-PCR. RESULTS: From a total of 260 ENP-derived miRNAs, we identified 22 miRNAs that could potentially target SARS-CoV-2 genome. 11 miRNAs showed absolute target specificity towards SARS-CoV-2 but not SARS-CoV. ENPs from soybean, ginger, hamimelon, grapefruit, tomato and pear possess multiple miRNAs targeting different regions within SARS-CoV-2. Interestingly, osa/cme miR-530b-5p specifically targeted the ribosomal slippage site between ORF1a and ORF1b. We validated the relative expression of six miRNAs (miR-5077, miR-6300, miR-156a, miR-169, miR-5059 and miR-166 m) in ginger and grapefruit ENPs by RT-PCR which showed differential enrichment of specific miRNAs in ginger and grapefruit ENPs. CONCLUSION: Since administration of ENPs leads to their accumulation into lung tissues in vivo, ENP derived miRNAs targeting SARS-CoV-2 genome has the potential to be developed as an alternative therapy.


Assuntos
Antivirais/farmacologia , Exossomos/química , MicroRNAs/farmacologia , Nanopartículas , Compostos Fitoquímicos/farmacologia , Plantas Comestíveis/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Antivirais/isolamento & purificação , Sequência de Bases , Sítios de Ligação , Citrus paradisi/química , Simulação por Computador , Genoma Viral , Zingiber officinale/química , Humanos , MicroRNAs/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Plantas Comestíveis/genética , Reação em Cadeia da Polimerase em Tempo Real , Tratamento Farmacológico da COVID-19
10.
J Sci Food Agric ; 101(3): 1030-1037, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32767363

RESUMO

BACKGROUND: As a result of similar appearances between edible and poisonous plants, 42 patients have ingested poisonous plants from 2013 to 2017 in Korea. We have developed species-specific primer sets of three of edible and poisonous plants sets (Ligularia fischeri & Caltha palustris, Artemisia annua & Ambrosia artemisiifolia and Hemerocallis fulva & Veratrum maackii) for distinguishing both plants using a real-time polymerase chain reaction assay. RESULTS: The efficiencies of the developed primer sets ranged from 87.8% to 102.0%. The developed primer sets have significant correlation coefficient values between the Ct values and the log DNA concentration for their target species (r2 > 0.99). The cut-off lines as the crossing point values of the limit of quantitation of the target species were determined, and all non-target species were amplified later than the cut-off cycles. Then, the effectiveness of the developed primer sets was evaluated using commercial food products and digested samples with simulated gastric juice. CONCLUSION: All of the developed species-specific primer sets were able to detect target DNA successfully in commercial food products and the digested samples. Therefore, the developed species-specific primer sets in the present study would be useful tools for distinguishing between poisonous plants and edible plants. © 2020 Society of Chemical Industry.


Assuntos
Plantas Comestíveis/genética , Plantas Tóxicas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Primers do DNA/genética , DNA de Plantas/genética , Análise Discriminante , Plantas Comestíveis/anatomia & histologia , Plantas Comestíveis/classificação , Plantas Tóxicas/anatomia & histologia , Plantas Tóxicas/classificação , República da Coreia
11.
PLoS One ; 15(9): e0239823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986773

RESUMO

Houttuynia cordata (Saururaceae), an ancient and relic species, has been used as an important medicinal and edible plant in most parts of Asia. However, because of the lack of genome information and reliable molecular markers, studies on its population structure, or phylogenetic relationships with other related species are still rare. Here, we de novo assembled the complete chloroplast (cp) genome of H. cordata using the integration of the long PacBio and short Illumina reads. The cp genome of H. cordata showed a typical quadripartite cycle of 160,226 bp. This included a pair of inverted repeats (IRa and IRb) of 26,853 bp, separated by a large single-copy (LSC) region of 88,180 bp and a small single-copy (SSC) region of 18,340 bp. A total of 112 unique genes, including 79 protein-coding genes, 29 tRNA genes, and four rRNA genes, were identified in this cp genome. Eighty-one genes were located on the LSC region, 13 genes were located on the SSC region, and 17 two-copy genes were located on the IR region. Additionally, 48 repeat sequences and 86 SSR loci, which can be used as genomic markers for population structure analysis, were also detected. Phylogenetic analysis using 21 cp genomes of the Piperales family demonstrated that H. cordata had a close relationship with the species within the Aristolochia genus. Moreover, the results of mVISTA analysis and comparisons of IR regions demonstrated that the cp genome of H. cordata was conserved with that of the Aristolochia species. Our results provide valuable information for analyzing the genetic diversity and population structure of H. cordata, which can contribute to further its genetic improvement and breeding.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos , Houttuynia/genética , Plantas Comestíveis/genética , Aristolochia/genética , Evolução Molecular , Genes de Plantas , Genes de RNAr , Loci Gênicos , Variação Genética , Genoma de Planta , Sequências Repetidas Invertidas , Filogenia , Plantas Medicinais/genética , RNA de Transferência/genética
12.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32500918

RESUMO

Root-associated genes play an important role in plants. Despite the fact that there have been studies on root biology, information on genes that are specifically expressed or upregulated in roots is poorly collected. There exist very few databases dedicated to genes and promoters associated with root biology, preventing effective root-related studies. Therefore, we analyzed multiple types of omics data to identify root-associated genes in maize, soybean, and sorghum and constructed a comprehensive online database of these genes and their promoter sequences. This database creates a pivotal platform capable of stimulating and facilitating further studies on manipulating root growth and development.


Assuntos
Bases de Dados Genéticas , Genes de Plantas/genética , Magnoliopsida/genética , Raízes de Plantas , Plantas Comestíveis/genética , Biologia Computacional , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Regiões Promotoras Genéticas/genética
14.
Shokuhin Eiseigaku Zasshi ; 61(1): 22-30, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32336715

RESUMO

An identification method for testing contamination in products was assessed using various vegetables and fruits (70 types in total). DNA was extracted from plant fragments which are 1 to several millimeters long and the plastid rpl16-rpl14 linker sequence (approximately 550 base pairs) was amplified by PCR. The DNA nucleotide sequence was determined, and homology and SNP (single nucleotide polymorphism) analyses were carried out. Consequently, the test plants were difficult to distinguish between closely related species, but could be divided into 38 groups at the genus level or the species level. Although problems such as the accuracy of discrimination among some closely related plants and DNA stability under an acidic condition remain to be resolved, this method is considered to be expected to identify plant fragments mixed in products or raw materials.


Assuntos
DNA de Plantas/análise , Frutas/química , Plantas Comestíveis/genética , Plastídeos/genética , Verduras/química , Polimorfismo de Nucleotídeo Único
15.
Biotechnol Appl Biochem ; 67(1): 148-157, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31898361

RESUMO

Tuberculosis (TB) is one of the major infectious diseases caused by Mycobacterium tuberculosis. The development of an effective and economical vaccine for controlling TB is essential especially for developing countries. Edible plants can serve as biofactories to produce vaccine antigens. In this study, 6 kDa early secretory antigenic target (ESAT-6) of M. tuberculosis was expressed in Brassica oleracea var. italica via Agrobacterium-mediated transformation to facilitate oral delivery of antigen. ESAT-6 gene was cloned using Gateway® cloning strategy. Transformation and presence of transgene was confirmed through PCR. Expression level of transgene was calculated via quantitative real-time PCR (qRT-PCR) and the maximum integrated transgene number was two. Maximum amount of total soluble fraction of ESAT-6 was evaluated by immunoblotting, estimated to accumulate up to 0.5% of total soluble protein. The recombinant ESAT-6 protein was further purified and detected using silver staining and Western blotting. ESAT-6 protein induced humoral immune response in mice immunized orally and subcutaneously. The expression of M. tuberculosis antigen in edible plants could aid in the development of cost-effective and oral delivery of an antigen-based subunit vaccine against TB. To the best our knowledge, it is the first report of expression of a vaccine antigen in broccoli.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Brassica/genética , Plantas Comestíveis/genética , Brassica/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Plantas Comestíveis/metabolismo
16.
PLoS One ; 14(4): e0215176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964918

RESUMO

Luffa acutangula and L. aegyptiaca are two vegetable species commonly found in South and South East Asia. L. acutangula is widely grown; however, L. aegyptiaca is considered as an underutilized crop. The species delimits, phylogenetic positions, and the varietal identities of L. acutangula and L. aegyptiaca in Sri Lanka are not known. Thus, in the present study, we aimed to establish the species delimits and varietal identities of L. acutangula and L. aegyptiaca varieties grown in Sri Lanka using morphometric, phylogenetic and organoleptic assessments. We assessed five varieties of L. acutangula and three varieties of L. aegyptiaca. The vegetative and reproductive data were collected for the morphometric analysis and DNA sequence polymorphism of the makers rbcL, trnH-psbA and ITS for the phylogenetic analysis. We also conducted an organoleptic assessment based on taste parameters; aroma, bitterness, color, texture, and overall preference using the dishes prepared according to the most common Sri Lankan recipe for Luffa. The variation of the vegetative and reproductive traits grouped L. acutangula varieties into two distinct clusters. The trnH-psbA polymorphism provided the basis for the species delimits of L. acutangula and L. aegyptiaca. The rbcL and ITS polymorphisms provided the basis for the identities of the varieties of L. aegyptiaca and L. acutangula respectively. In the phylogeny, the L. acutangula varieties of Sri Lanka formed a unique clade and the L. aegyptiaca varieties formed a reciprocal monophyletic group in comparison to worldwide L. aegyptiaca reported. The taste parameters aroma, texture, color, and overall preference were significantly different among the Luffa varieties. The L. aegyptiaca varieties received lower preference in the organoleptic assessment. The present study sets the species delimits, phylogenetic positions and the varietal identities of the cultivated germplasm of Luffa and revealed the distinct morphological and organoleptic properties of each variety.


Assuntos
Luffa/classificação , DNA de Plantas/genética , Preferências Alimentares , Frutas/anatomia & histologia , Frutas/classificação , Frutas/genética , Genes de Plantas , Marcadores Genéticos , Humanos , Mutação INDEL , Luffa/anatomia & histologia , Luffa/genética , Filogenia , Folhas de Planta/anatomia & histologia , Plantas Comestíveis/anatomia & histologia , Plantas Comestíveis/classificação , Plantas Comestíveis/genética , Polimorfismo de Nucleotídeo Único , Sensação , Especificidade da Espécie , Sri Lanka
17.
Prog Lipid Res ; 73: 46-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521822

RESUMO

Triacylglycerols (TAG) are the major form of energy storage in plants. TAG are primarily stored in seeds and fruits, but vegetative tissues also possess a high capacity for their synthesis and storage. These storage lipids are essential to plant development, being used in seedling growth during germination, pollen development, and sexual reproduction, for example. TAG are also an important source of edible oils for animal and human consumption, and are used for fuel and industrial feedstocks. The canonical pathway leading to TAG synthesis is the glycerol-3-phosphate, or Kennedy, pathway, which is an evolutionarily conserved process in most living organisms. The enzymatic machinery for synthesizing TAG is well known in several plant species, and the genes encoding these enzymes have been the focus of many studies. Here, we review recent progress on the understanding of evolutionary, functional and biotechnological aspects of the glycerol-3-phosphate pathway enzymes that produce TAG. We discuss current knowledge about their functional aspects, and summarize valuable insights into genetically engineered plants for enhancing TAG accumulation. Also, we highlight the evolutionary history of these genes and present a meta-analysis linking positive selection to gene family and plant diversification, and also to the domestication processes in oilseed crops.


Assuntos
Frutas/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Plantas Comestíveis/enzimologia , Sementes/enzimologia , Triglicerídeos/biossíntese , Animais , Biotecnologia , Simulação por Computador , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Evolução Molecular , Frutas/genética , Humanos , Filogenia , Plantas Comestíveis/genética , Plantas Geneticamente Modificadas , Sementes/genética
18.
RNA Biol ; 15(12): 1433-1439, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30474479

RESUMO

Cross-kingdom gene regulation by microRNAs (miRNAs) initiated a hot debate on the effective role of orally acquired plant miRNAs on human gene expression. It resulted in the expansion of gene regulation theories and role of plant miRNAs in cross-kingdom regulation of gene expression. This opened up the discussion that 'Whether we really get what we eat?' and 'Whether the orally acquired miRNAs really have a biologically important consequences after entering our digestive and circulatory system?' The reports of orally acquired plant miRNAs inside human alimentary canal have been a topic of discussion in the scientific community. The cross-kingdom gene regulations have raised our hopes to explore the exciting world of plant miRNAs as therapeutic potential and dietary supplements. However, there are reports which have raised concerns over any such cross-kingdom regulation and argued that technical flaws in the experiments might have led to such hypothesis. This review will give the complete understanding of exogenous application and cross-kingdom regulation of plant miRNAs on human health. Here, we provide update and discuss the consequences of plant miRNA mediated cross-kingdom gene regulation and possibilities for this exciting regulatory mechanism as an augmented therapy against various diseases.


Assuntos
Dietoterapia , MicroRNAs/administração & dosagem , Plantas Comestíveis/genética , RNA de Plantas/administração & dosagem , Animais , Dietoterapia/métodos , Suplementos Nutricionais , Regulação da Expressão Gênica , Humanos , Mamíferos/genética , Interferência de RNA , RNA Viral , Especificidade da Espécie
19.
J Oleo Sci ; 67(10): 1235-1246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30305556

RESUMO

Terpene synthase (TPS) genes were isolated and functionally characterized from three traditional edible plants, Acanthopanax sciadophylloides ("Koshiabura") and Acanthopanax sieboldianus ("Himeukogi"), belonging to the family Araliaceae, and Curcuma zedoaria (zedoary, "Gajutsu"), belonging to the family Zingiberaceae. These plants emit characteristic fragrances and are used for traditional foods and folk medicines. From their fragrant tissues, i.e., sprouts of Araliaceae plants and developing rhizomes of zedoary, total RNAs were extracted and reverse transcribed. The resultant cDNAs were used for degenerate PCR followed by rapid amplification of cDNA ends. From the contig sequences obtained, full-length Tps genes were amplified by PCR with newly synthesized primer sets. The isolated full-length genes were introduced into engineered Escherichia coli cells, which can utilize acetoacetate to synthesize farnesyl diphosphate, the substrate for TPSs, through the mevalonate pathway. TPS products synthesized in the transformed E. coli cells were analysed by gas chromatography-mass spectrometry, nuclear magnetic resonance, and optical rotation. Consequently, the isolated Tps genes were found to encode ß-caryophyllene synthase, germacrene D synthase, linalool/(3S)-(+)-nerolidol synthase, ß-eudesmol synthase, and germacrene B synthase. These results lead us to expect that some of the effective ingredients in folk medicines are volatile terpenes and that intake of traditional foods including these edible plants would have some positive effects on our health.


Assuntos
Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Curcuma/enzimologia , Curcuma/genética , Eleutherococcus/enzimologia , Eleutherococcus/genética , Plantas Comestíveis/enzimologia , Plantas Comestíveis/genética , Acetoacetatos/metabolismo , Curcuma/química , DNA Complementar , Eleutherococcus/química , Escherichia coli/metabolismo , Ácido Mevalônico/metabolismo , Plantas Comestíveis/química , Fosfatos de Poli-Isoprenil/metabolismo , Reação em Cadeia da Polimerase , RNA de Plantas/isolamento & purificação , Sesquiterpenos/metabolismo , Terpenos , Compostos Orgânicos Voláteis
20.
Molecules ; 23(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874832

RESUMO

Chrysanthemum carinatum Schousb and Kalimeris indica are widely distributed edible vegetables and the sources of the Chinese medicine Asteraceae. The complete chloroplast (cp) genome of Asteraceae usually occurs in the inversions of two regions. Hence, the cp genome sequences and structures of Asteraceae species are crucial for the cp genome genetic diversity and evolutionary studies. Hence, in this paper, we have sequenced and analyzed for the first time the cp genome size of C. carinatum Schousb and K. indica, which are 149,752 bp and 152,885 bp, with a pair of inverted repeats (IRs) (24,523 bp and 25,003) separated by a large single copy (LSC) region (82,290 bp and 84,610) and a small single copy (SSC) region (18,416 bp and 18,269), respectively. In total, 79 protein-coding genes, 30 distinct transfer RNA (tRNA) genes, four distinct rRNA genes and two pseudogenes were found not only in C. carinatum Schousb but also in the K. indica cp genome. Fifty-two (52) and fifty-nine (59) repeats, and seventy (70) and ninety (90) simple sequence repeats (SSRs) were found in the C. carinatum Schousb and K. indica cp genomes, respectively. Codon usage analysis showed that leucine, isoleucine, and serine are the most frequent amino acids and that the UAA stop codon was the significantly favorite stop codon in both cp genomes. The two inversions, the LSC region ranging from trnC-GCA to trnG-UCC and the whole SSC region were found in both of them. The complete cp genome comparison with other Asteraceae species showed that the coding area is more conservative than the non-coding area. The phylogenetic analysis revealed that the rbcL gene is a good barcoding marker for identifying different vegetables. These results give an insight into the identification, the barcoding, and the understanding of the evolutionary model of the Asteraceae cp genome.


Assuntos
Asteraceae/genética , Chrysanthemum/genética , Código de Barras de DNA Taxonômico , Genoma de Cloroplastos , Plantas Comestíveis/genética , Ribulose-Bifosfato Carboxilase/genética , Análise de Sequência de DNA , Chrysanthemum/classificação , Códon , Códon de Terminação , Filogenia , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA